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This recitation serves as a review on boson and fermion gases before the final exam.
For a more comprehensive resource, see Ch. 7 of Mehran Kardar’s Statistical Physics of Particles and Ch. 3 of David

Tong’s Lectures on Statistical Physics.
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1 Boson gas

1.1 Bose-Einstein distribution

We first review the derivation of the Bose-Einstein distribution, which highlights some important concepts on canonical
ensemble versus grand canonical ensemble. Consider N non-interacting bosons where each particle is in an energy eigenstate
|r⟩ with energy Er. Since the particles in the same energy eigenstate are indistinguishable, we only count the number of
particles nr in state |r⟩. The total energy is

∑
r nrEr. The canonical partition function then sums over all possible nr that

have the correct total number
∑

r nr = N :

Z =
∑

{nr}|
∑

r nr=N

e−β
∑

r nrEr . (1)

Here comes the potential confusion about grand canonical ensemble. Since it is hard to perform the above constrained
sum explicitly, we usually “switch” to the grand canonical ensemble instead:

Q =
∑
{nr}

e−β
∑

r nr(Er−µ) . (2)

Then, we have to impose the constraint that the average number of particles should be N , which determines µ in terms of
N,T :

N =
1

β

∂ logQ

∂µ
. (3)

The hope is that in the thermodynamic limit N → ∞, the fluctuations in the number of particle vanish, and the grand
canonical results should agree with the canonical results. However, this is merely a mathematical trick for studying the
canonical ensemble, and the number of particles in the physical system never fluctuates. In contrast, in a genuine grand
canonical ensemble, µ should be a fixed parameter instead of a function of N,T , and the number of particles do fluctuate. In
this case, the average number of particles is determined by the choice of µ instead of constrained by hand.
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1 BOSON GAS

For now, let us continue the calculation of Q. First, the partition function for a single state is

Qr =

∞∑
nr=0

e−βnr(Er−µ) =
1

1− e−β(Er−µ)
. (4)

Note that for this to converge, we must assume that Er > µ. This must be satisfied for all r, so µ must be smaller than the
ground state energy E0. Now, since each r is independent, the full partition function is simply

Q =
∏
r

1

1− e−β(Er−µ)
, (5)

and the average number of particles is

N =
1

β

∂

∂µ

∑
r

log
1

1− e−β(Er−µ)
=
∑
r

1

eβ(Er−µ) − 1
. (6)

Note that inverting this equation gives µ as a function of N,T . Since we also have
∑

r ⟨nr⟩ = N , we conclude that

⟨nr⟩ =
1

eβ(Er−µ) − 1
. (7)

This is the Bose-Einstein distribution.

1.2 High temperature expansion

Let us now apply the above results to the free boson gas with energy

E =
ℏ2k2

2m
. (8)

The ground state energy is E0 = 0, so we require µ < 0. Given that we separate out the ground state contribution, we can
replace the sum of states with an integral. Denoting the fugacity z = eβµ with 0 < z < 1, the constraint with N now becomes

N = NE=0 +NE>0 (9)

=
1

z−1 − 1
+ V

∫
d3k

(2π)3
1

z−1eβℏ2k2/2m − 1
(10)

=
1

z−1 − 1
+

V

2π2

∫ ∞

0

k2 dk

z−1eβℏ2k2/2m − 1
(11)

Let x = βℏ2k2/2m. Then,

N =
1

z−1 − 1
+

V

4π2

(
2m

ℏ2β

)3/2 ∫ ∞

0

x1/2 dx

z−1ex − 1
. (12)

This equation is quite complicated, so let us study different limits of z. For z ≪ 1, the first term is negligible in the
thermodynamic limit V → ∞. For the second term, smaller z is balanced by smaller β to give the same N , so this is a high
temperature limit. We can expand the second term in powers of z:

N ≃ V

4π2

(
2m

ℏ2β

)3/2 ∫ ∞

0

dx zx1/2e−x(1 + ze−x) (13)

=
V

Λ3
z

(
1 +

z

2
√
2

)
, (14)

where Λ = h/
√

2πmkBT is the thermal de Broglie wavelength. The leading order solution

z ≃ NΛ3

V
, (15)

is the same as the classical gas. The condition z ≪ 1 then means that the inter-particle spacing is much larger than the
thermal wavelength. Including the correction term, we have

z ≃ NΛ3

V

(
1− 1

2
√
2

NΛ3

V

)
. (16)
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2 FERMION GAS

We can now use this result to calculate the equation of state of the gas. Recall that the pressure of the gas is given by the
grand free energy:

pV =
logQ

β
(17)

=
V

β

∫
d3k

(2π)3
log

1

1− ze−βℏ2k2/2m
(18)

=
V

4π2β

(
2m

ℏ2β

)3/2 ∫ ∞

0

dxx1/2 log
1

1− ze−x
(19)

≃ V

4π2β

(
2m

ℏ2β

)3/2 ∫ ∞

0

dx zx1/2e−x(1 + ze−x/2) (20)

=
V

Λ3β
z

(
1 +

z

4
√
2

)
(21)

≃ NkBT

(
1− 1

4
√
2

NΛ3

V

)
. (22)

This is the same as the classical gas but with an effective attractive interaction in terms of the second virial coefficient due to
the Bose statistics.

1.3 Bose-Einstein condensation

The above becomes more interesting when z is close to 1 or at low temperature, as now the first term NE=0 may contribute
significantly. Indeed, the second term satisfies

NE>0 ≤ V

4π2

(
2m

ℏ2β

)3/2 ∫ ∞

0

x1/2 dx

ex − 1
(23)

= V

(
m

2πℏ2β

)3/2

f+
3/2(1) , (24)

where f+
3/2(1) ≃ 2.612. The above matches with N at the critical temperature

N = V

(
mkBTc

2πℏ2

)3/2

f+
3/2(1) ⇒ Tc =

2πℏ2

mkB

(
N

f+
3/2(1)V

)2/3

. (25)

At temperature below Tc, NE>0 becomes smaller than N , and the first term NE=0 must contribute significantly (with z close
to 1):

NE=0 = N −NE>0 = N

(
1−

(
T

Tc

)3/2
)

. (26)

This is the Bose-Einstein condensate.
To summarize, for T > Tc, we have z < 1 and the value of z is such that there are N particles in the excited states, while

the number of particles at the ground state is negligible. For T < Tc, we have z ≃ 1, which determines the number of particles
in the excited states; the remaining particles must condense at the ground state.

2 Fermion gas

2.1 Fermi-Dirac distribution

Consider N non-interacting fermions. Again, we will work in the grand canonical ensemble, but keep in mind that we have to
impose the constraint on the average number of particles.

Due to the Pauli exclusion principle, each energy eigenstate can only be occupied by nr = 0, 1 particles. Therefore, the
partition function for a single state is

Qr = 1 + e−β(Er−µ) . (27)

Note that this time we do not have any constraint on µ for convergence. The full partition function is

Q =
∏
r

(
1 + e−β(Er−µ)

)
, (28)
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2 FERMION GAS

and the average number of particles is

N =
1

β

∂

∂µ

∑
r

log
(
1 + e−β(Er−µ)

)
=
∑
r

1

eβ(Er−µ) + 1
. (29)

Therefore, the Fermi-Dirac distribution is

⟨nr⟩ =
1

eβ(Er−µ) + 1
. (30)

2.2 Fermi surface

Let us first look at the T = 0 case. The Fermi-Dirac distribution reduces to

⟨nr⟩ =

{
1 Er < µ

0 Er > µ
. (31)

That is, the particles occupy the lowest energy states without repetition. The highest energy occupied is µ(T = 0), which is
also known as the Fermi energy EF .

For free fermion gas with energy

E =
ℏ2k2

2m
, (32)

we can accordingly define the Fermi momentum kF such that EF = E(kF ). The set of filled states satisfies |⃗k| ≤ kF and is

called the Fermi sea or the Fermi sphere. Correspondingly, the Fermi surface is the set of states with |⃗k| = kF . When there
are N particles, the Fermi surface is given by

N = gV

∫
|⃗k|≤kF

d3k

(2π)3
=

gV k3F
6π2

=
gV

6π2

(
2mEF

ℏ2

)3/2

, (33)

where g is the spin degeneracy; for example we have g = 2 for electrons. The total energy is

E = gV

∫
|⃗k|≤kF

d3k

(2π)3
ℏ2k2

2m
=

ℏ2

2m

gV k5F
10π2

=
3

5
NEF . (34)

That is, the average energy per particle is 3/5 of the Fermi energy.

2.3 Sommerfeld expansion

Let us now look at finite temperatures. For high temperature, the calculations are the same as those in boson gas up to a sign
change in the denominator of the distribution. The low temperature expansion, known as the Sommerfeld expansion, is more
interesting.

However, before doing the math (which is very messy), let us first think about the intuition behind. Intuitively, we have to
excite the particles near the Fermi surface first. With low temperature T , only particles with energy around kBT lower than
the Fermi energy are excited. There are ρ(EF )kBT such particles, where ρ(EF ) is the density of state at the Fermi energy. If
the excitation energy is also around kBT , the total energy gained is

∆E ∼ ρ(EF )(kBT )
2 . (35)

Hence, the heat capacity

CV ∼ ρ(EF )k
2
BT ∼

Nk2BT

EF

, (36)

is linear in T . This is the most important take-home message.
Now we rigorously derive CV with the Sommerfeld expansion. We first write down the condition for z:

N =
gV

4π2

(
2m

ℏ2β

)3/2 ∫ ∞

0

x1/2 dx

z−1ex + 1
. (37)

Similarly, one can derive that the total energy is

E =
gV

4π2β

(
2m

ℏ2β

)3/2 ∫ ∞

0

x3/2 dx

z−1ex + 1
. (38)

4



3 SUPERFLUID HELIUM-4

It remains to see how to expand the integral

gn(z) =

∫ ∞

0

xn dx

z−1ex + 1
, (39)

for large z, as z → ∞ at T = 0. First, it is useful to change the variable

gn(z) =

∫ ∞

− log z

(x+ log z)n dx

ex + 1
. (40)

Using integration by parts

gn(z) =

[
(x+ log z)n+1

(n+ 1)(ex + 1)

]∞
− log z

−
∫ ∞

− log z

(x+ log z)n+1 dx

n+ 1

d

dx

1

ex + 1
(41)

=

∫ ∞

− log z

(x+ log z)n+1 dx

n+ 1

ex

(ex + 1)2
. (42)

Since the integrand decays exponentially for large negative x, we can extend the integration range to (−∞,∞). We can also
Taylor expand the binomial (x+ log z)n+1:

gn(z) ≃
∫ ∞

−∞
dx

(
(log z)n+1

n+ 1
+ x(log z)n +

n

2
x2(log z)n−1 + · · ·

)
ex

(ex + 1)2
. (43)

The first few terms in the expansion dominate as z is large. Note that the x term vanishes under the integral as ex/(ex + 1)2

is even. Therefore,

gn(z) ≃
(log z)n+1

n+ 1

(
1 +

π2

6

(n+ 1)n

(log z)2
+ · · ·

)
. (44)

We can use the above result to find the heat capacity of free fermion gas at low temperature. First, since N does not
change with temperature, we require

g1/2(z)

β3/2
= const. ⇒ µ3/2

(
1 +

π2

8

(
kBT

µ

)2
)

= const. . (45)

Since we know that µ(T = 0) = EF , we get

µ ≃ EF

(
1− π2

12

(
kBT

EF

)2
)

. (46)

Then, we can calculate the total energy in the following way:

E

N
=

1

β

g3/2(z)

g1/2(z)
(47)

≃ 3

5
µ

(
1 +

π2

2

(
kBT

µ

)2
)

(48)

=
3

5
EF

(
1 +

5π2

12

(
kBT

EF

)2
)

. (49)

Finally, the heat capacity is

CV =
∂E

∂T
=

π2

2

Nk2BT

EF

, (50)

which indeed agrees with our intuition in the above, but now the coefficient is exact.

3 Superfluid helium-4

Isotopes of helium give interesting examples of both boson and fermion gases, as remarkably, helium does not freeze into solid
even at zero temperature under room pressure. The lighter isotope helium-3 has two protons and one neutrons, so it is a
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3 SUPERFLUID HELIUM-4

fermion and there is no condensation at low temperature. As a result, there is no superfluid phase transition for helium-3
(except when the atoms pair up to form effective bosons at even lower temperature, similar to superconductivity).

The heavier isotope helium-4 has two protons and two neutrons, so it is a boson and there should be Bose-Einstein
condensation (BEC) at low temperature. Correspondingly, there is a superfluid phase transition around T ≃ 2.17 K, which is
indeed close to the BEC transition temperature (3.14 K). Below the transition temperature, some of the helium atoms enter
the superfluid phase, again in a way similar to BEC.

However, there are strong interactions between the helium atoms, so the superfluid phase is not fully described by the
BEC for free bosons. In particular, it is the interactions that lead to zero viscosity in the condensate. A clear difference
between the free and interacting systems is in the behavior of heat capacity. For the superfluid, the heat capacity diverges at
the transition temperature, and vanishes as T 3 (like phonons) when T → 0. In contrast, the heat capacity of the free BEC is
finite at the transition temperature, and vanishes as T 3/2 when T → 0.

Figure 1:The heat capacity of helium-4 as a function of temperature.
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